
MATHEMATICS OF COMPUTATION 
Volume 66, Number 219, July 1997, Pages 1185-1194 
S 0025-5718(97)00863-6 

COMPUTATION OF RELATIVE CLASS NUMBERS 
OF CM-FIELDS 

STEPHANE LOUBOUTIN 

ABSTRACT. It was well known that it is easy to compute relative class numbers 
of abelian CM-fields by using generalized Bernoulli numbers (see Theorem 
4.17 in Introduction to cyclotomic fields by L. C. Washington, Grad. Texts 
in Math., vol. 83, Springer-Verlag, 1982). Here, we provide a technique for 
computing the relative class number of any CM-field. 

1. STATEMENT OF THE RESULTS 

Proposition 1. Letn > 1 be an integer and a > 1 be real. Set Pn(x) = 1 kXrk, 

(1) fn(s) = rFn(s)A-2s (s1 + 2 2) 

and 

A 2 ce+icoO 

(2) Kn(A) =i. | fn(s)ds. 
i c7r -ioo 

Then, it holds 

(3) 0 < Kn(A) < 2Pn(nA2/n )e-nA2/n < 2nexp(-A2/n). 

Theorem 2. Let N be a totally imaginary number field of degree 2n which is a 
quadratic extension of a totally real number field N+ of degree n, i.e. N is a CM- 
field. Let WN be the number of roots of unity in N, QN E {1, 2} be the Hasse unit 
index of N, and dN, ,N and dN+, (N+ be the absolute values of the discriminants 
and the Dedekind zeta functions of N and N+, respectively. Let XN/N+ be the 

quadratic character assocciated with the quadratic extension N/N+ and let qfk be 
the coefficients of the Dirichlet series ((N/IN+)(S) = L(s, XN/N+) = Zk>1 Okks, 

R(s) > 1. Set AN/N+ - dN/lr dN+. 
We have 

(4) h QN4/7 A S kKf (k/AN/N+), 

and according to (3) this series (4) is absolutely convergent. Moreover, set 

(5) B(N) d= AN/N+ -log AN/N+) 
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Then, if A > 1 and n are given, then the limit of I h-h-(M) I as AN/N+ approaches 
infinity is equal to 0, where h- (M) is the approximation of the relative class number 
obtained by disregarding in the series occurring in (4) the indices k > M > B(N). 

For example, if N of degree m = 2n is the narrow Hilbert class field of a real 
quadratic number field L of discriminant dL, we have 

B(N) = (A )m/ dj/8logm/4(d /7r2). 

The following Proposition 3 explains how we compute the numerical values of 

the function A |-4 K, (A) according to its series expansion: 

Proposition 3. Take A > 0. It holds 

(6) Kn(A) = 1 + irn/2A + 2A2 E Ress=_m(fn). 
m>0 

This series is absolutely convergent and for any integer M > 0 we have 

(7) 2A2 E Ressm(fn) < (M+ 1)(M!/2) 

Finally, the following Proposition 4 explains how to compute recursively the 

values of the residues Ress=-m(fn) occurring in (6): 

Proposition 4. We have 1 

A2m - 
(8) Ress=-m(fn) = _(_l)nm E 2-1 hi(m)((2m+ 1)i + (2m+2)i) 

where the hi(m) 's are computed recursively from the hi(0) 's by using 

(9) 
i b -1 

hi(m+1)= hj(m) and E hj(0)sj +0(1)=Fn(s)A-2s, 
j=-n (a+ =-n 

where bk = Cnn_1 = ((k + n - 1)!/k!(n - 1)!). Thus, if 

n-1 

(10) rn(S + 1)= E his + 0(Sn), 
i=O 

then 

(1) hj-(O) E ! hj20A ih (? <i < n-1). 
i=O 

For proving these results, obvious questions of convergence of series and integrals, 
and questions of inversions of integrals and summations will not be gone into. 

1Note the misprint in the formula given in [Lou 2]. 
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2. INTRODUCTION 

Prior to the method we have developed here, the only general method for com- 
puting the relative class number of any CM-field was that developed by T. Shintani 
(see [Oka 1] and [Oka 2] for examples of actual relative class number computations 
using Shintani's ideas). However, his method requires the knowledge of a great deal 
of information on the maximal totally real subfield N+. In particular, it requires 
the knowledge of a system of fundamental units of the group of totally positive 
units of N+. However, what makes the concept of CM-field an attractive one is 
that the relative class number formula 

_ QNWN dN ReSS=1(WN) QNWN K 
__ _ (12) h~=N (2ir)n dN+ ReS1=((N+) (2(,) Lx dN+ N + 

enables us to get lower bounds on relative class numbers and solve class number 
and class group problems for CM-fields precisely because (12) does not involve any 
regulator (see [Lou-Oka] and [LOO]). Thus, the reader may possibly feel dissatisfied 
that he should have to know beforehand a good grasp of the unit group of N+ before 
he can compute h-, whereas (12) gives an expression for h- which does not involve 
units. The reader may now possibly feel satisfied that this paper shows how using 
(12) he indeed gets an efficient method for computing h- provided that he only 
knows how to compute the decomposition of any rational prime into a product of 
prime ideals of N. The key point of our method is to establish the holomorphic 
continuation of s l-4 ((N/(N+)(S) = L(s,XN/N+) in the same way Riemann did 
in the case of the Riemann zeta function (by using Mellin transformation) and to 
evaluate the resulting series at s = 1 (see section 4). 

Finally, we note that the results of this paper are better than those of [Lou 3]. 
Indeed, B(N) in (5) is nn/2-fold better than the one we gave in [Lou 3]. Moreover, 
our proof of (3) (in section 3) is more satisfactory and elegant than the one we gave 
in [Lou 3]. 

3. PROOF OF PROPOSITION 1 

We use: 

Lemma 5. Let a > 1 be real. We have 

ce+Zoo ds 0O if tb < 1, d J io+ s ds 01 if Ub< 1, 

-i 2s - I (ir if u > 1; 
arid 

2s-2 (iu if u > 1. 

Now, using 

rF (s) = J Ter(Y) s dy 

where the multiple integral ranges over (Y1, vYn) E (R* )n and where we set 
Y = Y1Y2 Yn and Tr(y) = Y1 + Y2 + + Yn, leads to 

K ( =A 
2 (1 (vA +dy 

Kn () = 
Jjr e-T(j (i\ yA )2s -1 2s -2))y 
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Using Lemma 5 yields 

Kn(A) = A2 Jf (y/A2+ (y/A2))e-(Y) v <21 e-()dy 
yzA2 ~ A -goeti mean 

For example, we get K1 (A) < 2e-A. Now, using the arithmetic-geometric mean 
inequality yields that {(Y1, ,Yn); y > A2} is included in {(yi, ,Yn); Tr(y) > 

nA2/n}, which yields 

Kn(A) < 2 e - Tr (Y) dy. 
T(y) _>nA2/n 

Then, the following easily proved Lemma 6 provides us with the desired result. 
We finally notice that we get a shorter and more satisfactory proof of [Lou 3, 
Proposition 1]: 

Lemma 6. SetPn(x) = - xk/k!. Then 

X IIayeI,. ,yn)CR* eTr(Y)dy ? / e-Ydy =ne-/n 
~Tr(y)>?a i/n 

Proof. Use 

{(Yi, Yn) E R+ Tr(y) > a} 
n 

C U {(Y1, , Yn), Yi > - and yj > 0 for j 7&i} .C 

4. PROOF OF THEOREM 2 

Let K be a number field of degree n = r1 + 2r2, where r1 is the number of real 

places of K and r2 the number of complex places of K. Let (K and RegK be the 
Dedekind zeta function and regulator of K. We set 

AK = 2-r2dj/2R-(rl+2r2)/2 

(13) AK = hKRegK where WK is the number of roots of unity in K, 
WK 

FK(S) = AsF (-> r (S)r2 K(S) 

Hence, FK a a simple pole at s = 1 with residue AK, and FK(S) = FK(1 - s). 

From now on, we let N be a CM-field of degree 2n, i.e. N is a totally imaginary 
number field of degree 2n which is a quadratic extension of a totally real number 
field N+ of degree n. Define the qk's by: 

4N/N+(s) 
N (s) = E Z kk (3R(s) > 1). 

N k>1 

Then, ((N/ N+)(S) = L(s,XN/N+) yields 

(14) qk = E XN/N+ () 

NN+ / (I) =k 

where I ranges over the integral ideals of N+ of norm k. Now, 

NIN+= (N/(N+ and 'N/N+ = FN/FN+ 
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are entire and 4N/N+ (s) = 4N/N+ (1 - s). Notice that 

(15) PNN+(1) AN+ QNhN 

where QN E {1, 2} is the Hasse unit index of N (see [Wa, Th. 4.16]). Since 

2r1 (S)(S 1)' 

using (13) for N and N+ leads to 

(16) TN/N+ (S) = CN/N+ A/N+r ( 1) N/N+(s) 

where 

CN/N+= 1/(47Th/ and AN/N+ = dN/I7dN+. 

Note that 

1 d 
(17) CN/N+AN/N+ = (2ir)- d 

Set 

1 [Q+i 

(18) qfN/N+ (X) ] IN/N+ (s)xsds (a > 1), (18) X ~~~2i7r ac-ioo /( ) 

i.e., N/N+ is the Mellin transform of the function TN/N+. Using (18) and (16) 
yields 

(19) '1N/N+ (X) = CN/N+ E OkHn (kx/AN/N+) (X > 0), 
k>1 

with 

(20) Hn(x)= 2i] 2 X 
.1f+ioO 

rn(S)xl-2s dS (x > O and a > 0). 

Now, we move the integral (18) to the line X(s) = 1 - a. Since TN/N+ is entire, we 

do not pick up any residue. Then, we use the functional equation 

IN/N+ (S) = QN/N+ (1 - S) 

satisfied by TN/N+ to come back to the line R(s) = a. We get 

(21) X'IN/N+(x) = 'IN/N+(1/X) (X > 0). 

Mellin's inversion formula and (21) yield 

(22) QN/N+ (S) = N/N+ (X)xs - = j QNyN+ (x) {xs1 + x-S} dx. 
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By using (22), (19) and (20) we thus get 

TN/N+ (S) 
oo 1 e ++i oo kx \1-2S 

= CN/N+ L O3k I. (A )ANFN rn(S) {xs1 + xS} dS) dx 
k>1 N/N+/ 

1 e+iOo ' oo kx \ 1-2$ 
= CN/N+ E fk | r (S) (fjt)1 S {xs-l +x-} dx) dS 

= CN/N+ Z kk TJ r (S) (k/AN/N+) (2SS1 + 2S+S-2) dS, 

and the following yields (4): 

h- = QNWNPN/N+ (1) = QNWNPN/N+ (0) 

QNWNCN/N+ E Ok r] (S)(kIAN/N+) (2S-2 2S-) dS 
k>1 

= QNWNCN/N+AN/N+ E 
k Kn (k/AN/N+) 

k>1 

QNWN N Z k Kn (k/AN/N+) 
(2ir)n dNs+ k>1k 

Now, we prove the assertion below (5). 
To start with we quote some elementary facts we will need. 
1) We have 

n-1 1 n-1 
(23) Pn( ) = ,+k <E -< k! e- (x? 1). 

k=O k=O 

2) The derivative of 
2n-2 -x2/n 

(24) g(x) = x n e- 

is 

g' (x) = - ((2n - 2) - 2X2/n) Xn 2 e2/n 

and we have g'(x) < 0 ifx > 1 and 

(25) Ig'(x) j < 2xe 2/n 
(x 1). 

Moreover, 

g/(x) = (4n2x4/n _ (6n2 - 4n)X2/n + (2n 2-6n+4)) x 2/ e- 

the second derivative of g, satisfies g"(x) > 0 if x > 2n/2. Note that (3) and (24) 
yield 

(26) Kn(x) < 2enn-1 g(x) (x> 1). 
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3) If g(x) > 0, g'(x) < 0 and g"(x) > 0 on [a, +oo, [, then a < a < b implies 

(27) 0 < g(a) - g(b) < (a - b)g'(a). 

4) If A((n + 1)/2) /2 > 1, then the derivative of 

(28) h(x) = Xlogn (ex)e-n(x/A)2/n 

is 

h'(x) = (n- (2(x/A)2/n - 1) log(ex)) logn-1 (ex)e-n(x/A)2/n 

and we have h'(x) < 0 provided that x > A((nr+1)/2) /2 and x > 1, hence provided 

that x > A((n + 1)/2) n/2 if A((n + 1)/2) n/2 > 1. 

Now, we set A = AN/N+, Sn (k) = Ek dn(i) where dn(i) is the number of ways 
_= i 

of writing i as an ordered product of n positive integers, and 

RM= S k Kn(k/A). 
k 

k 
k>M 

We want an upper bound on RM. We note that (14) yields I/fkI < dn(k). Moreover, 

Sn(k) = 
k 

dn (i) < 
k 

I < logn(ek). 

i=l i _ 

Thus, we have 

JRmj < 1 dn (k)Kn(k/A) 
k 

k 
k>M 

< 2enn-1 5 (Sn(k) - Sn(k- 1))g(k/A) (if M > A) 
k>M 

(by using (26)) 

< 2enn-1 , Sn(k) (g(k/A) -g((k + 1)/A)) 
k>M 

2enn-1 
< S Sn(k)g'(k/A) (if M > 2n/2A) 

k>M 

(by using (27)) 

< 42 E klogn (ek)e-n(k/A)2/n 
k>M 

(by using (25)) 

4en21 E h(k) < 4en1 f 
h(x)dx (if M > ( 2+ ) A > 1) 

A2 ks>n MA2 I h8d 

(by using (28)). 
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Now, we set B = (eA)2/' and we change the variable by setting x = Ay'/2. We get 

JRMj < 2e(nr2/2)n Y2y log (By)en9_ 

Since H(y) = yn+1 logn (By)e-nY decreases on [(M/A)2/n, +oo[ if M? (2n+2)/2 A 
> e(n/2)-1 (since its derivative 

H'(y) = ((n + 1 - ny) log(By) + n)yn logn-1(By) e-ny 

satisfies H'(y) < 0 if y > (2n + 2)/n and B2n+2 > e), we get 

JRM < 2e(n2/2) H(y) 
JM/A)2/n Y 

< 2e(n 2 2)n H((M/A)2/n) 
C' 

dy y 

(M/A)2/n y 

- 2e(n2 /2)n H( (M/A)2/n) /(M/A)2/n, 

i.e., if M > 2n+2)n/ A > e(n/2)-1 then we have the following explicit upper 
bound: 
(29) 

IRMI < 2e (n G((M/A)2/n)) where G(y) = y log(By)e-Y and B - (eA)2/n. 

Now, we choose M B(N) = A (A log A) /2 and note that n 

G(-log A) = ln(A- /n jog2 A) 

yields the desired result: 

(30) Ih- - h-(M)l = 2nWN AjR I - ? (= AOn 'A) 

5. PROOF OF PROPOSITION 3 

Let M > 0 be a given integer. Shifting the integral (2) to the left to the line 
R(S) = -M - we pick a residue at s = 1, a residue at s = 1/2, and a residue 2' 
Ress=-m(fn) at each nonpositive integer -m < 0. Hence, by using 1(1/2) = V 
we get 

M A2 _M 2 +ioo 

(3 1) K (A) = 1 + ibn/2A + 2A2 E Ress=m(fn) + 
2 

fn (s) L. 
m=O J 2--o 

Now, it is well known that for any nonnegative integer 1 > 0 we have 

21 + 1 
2 

7r 
1-i 

k 
2 

(r (2+ ?it) += h( t) I| | 2+1+it 

where ch(x) = (ex + e-x)/2. Hence, using the functional equation r(s)r(1 - s) 
ir/ sin(irs) leads to 

/21w+1\2 12+ 1 -2 

and) 1 ( 2 ch(7rt) 2 

and 



COMPUTATION OF RELATIVE CLASS NUMBERS OF CM-FIELDS 1193 

|fn(-M- + it)| 2 

7r ) n/2 A2M+1_ _ + 1M + 

ch(irt) J o(2k+1 + it) (12M + 2 + it 12M + 3 + itJ 

< 1 Irn/2A2M+1 2 

-(ch(rrt))P/2 (M!/2)n 2M + 2' 

Set 

c j+0 dt 2 1 2 n/2 du 
Cn JO(ch(irt))n/2 =r JOV-ul 

(note that the sequence (cn)nzo decreases, that c1 = 4 V2_ dv < 4v'2/ir and 7r vV4 +1- 

C2 = 1). Then, 

A2 f M- I+ioo , n/2 2M+3 

(33) fJMn-o f(s)cis K- Vr 2 _i0r i (M + 1)(M!/2)n 

Note that the greater the value of n, the faster the series (6) converges. 

6. PROOF OF PROPOSITION 4 

We have 
Ress=-m (fn) 

--A2m Res,=o HS F+rn(-m + s)A-2, ( 1 + 1 m) 
s ? ~~~2m+1-2s . 2m+2-2sJ 

If we set 

(34) Ftn(-m + s)A-2s S ai(m)s' + 0(1), 
i=-n 

then we get 

(35) Ress=-m(fn) = -A2m 5 ai(m)21- ((2m + 1)i + (2m + 2)i) 
i=-n 

Now, 17(s) = lP(s + 1) yields 

-1 (' + -1)) 

5 ai(m + 1)si + 0(1) - (-))n(m + 1 )-n -aj(m)si + 0(1)) 
i=-n \ =-n 

and 

(m + 1-)-n = C Cnn-1 b + 
O(Sn) 

(m + 1)n k=O 
- 

(m + 1)k 0sm 

yields 

(36) ai(m + 1)= (-1) a(m) CTL-l 

Thus, in order to simplify the recursion relation (36), we define 

hi (m) = (_1) nm (m!)nai (m). 
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Then, using (35) yields (8), and using (34) and (36) yields (9). Note that (10) makes 
it easy to compute the numerical values of the hi's by using Maple, for example. 

7. EXAMPLES OF RELATIVE CLASS NUMBERS COMPUTATIONS 

In order to use (4) to compute relative class numbers, it remains to explain how 
we compute the qk'S. Since 

k= XN/N+ (I) 
NN+ /Q (I)=k 

(see (14)), then k i q ik is multiplicative and we only have to explain how we 
compute the OPqm where p is prime and m > 1. We will only explain this when N is 
normal over Q. In that case, let e and f be the inertia and residual degrees of p in 
N+. Set g = n/(ef). Then in N+ we have (p) = (Pi . g)' and 

XN/N+ (P1 ) = * * * = XN/N+ Mg) v 

and we let ep be the common value of these g symbols. Now, NN+/Q(I) = pm if 
and only if I = fl?1 'Pii with f 9g1 ei = m. Set 

j!(i-j)V 

Since the equation ei = K has Cg_1 -1 solutions in nonnegative integers ei, 
we easily get 

(37) J0 if f does not divide m, 
)6Ckg-gl if f divides m and m = kf. 

This formula (37) makes it easy to compute the Op.m. We refer the reader to [Lou 1], 
[Lou 2], [Lou 3], [Lou-Oka] and [LOO] for actual computations of relative class 
numbers. 
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